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Abstract 10 

Initialized decadal hindcasts are used to assess simulations of 1970-2009 equatorial 11 

Pacific SST, zonal wind stress, and surface flux trends. Initialized hindcasts are useful to 12 

assess how well the models simulate observed trends, as well as, how simulations of 13 

observed trends (due primarily to natural variability) differ from ensemble mean 14 

forecasted trends (due to the response to an increase in external forcing).  15 

All models forecast a statistically significant warming trend in both the warm-pool and 16 

cold-tongue regions. However, while the warm-pool warming trend is within the 17 

observed estimates, the cold-tongue warming trend is an order of magnitude larger than 18 

an ENSO residual estimated using SST instrumental reconstructions. Multi-model 19 

ensemble means formed using forecasts 6-10 years from initialization with 40 ensemble 20 

members do not produce an unambiguous zonal SST gradient response to an increase in 21 

external forcing. 22 

Systematic biases are identified in forecasts of surface fluxes. For example, in the warm-23 

pool region all year-1 forecasts produce SST trends similar to observations but ocean 24 

mixed-layer and net surface heat flux trends with opposite sign to air-sea datasets. In 25 

addition, year-1 forecasts produce positive shortwave feedbacks on decadal time scales, 26 

while 6-10 year forecasts produce negative or statistically insignificant shortwave flux 27 

feedbacks on decadal time scales, suggesting a sensitivity to circulations forced by the 28 

initialized ocean state. In the cold-tongue region initialized ensembles forecast positive 29 

net radiative flux trends even though shortwave flux trends are negative, i.e., for 30 

increasing cloudiness. This is inconsistent with air-sea datasets, which uniformly show 31 
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that the net surface radiative flux feedback is a damping of the underlying SSTs.  32 
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1. Introduction 33 

Based on estimates of centennial trends in the Indo-Pacific region from instrumental 34 

reconstructions of sea surface temperatures (SSTs) it is uncertain whether an increase in 35 

greenhouse gases has resulted in a strengthening or a weakening of equatorial Pacific 36 

zonal temperature gradients (Cane et al. 1997; Karnauskas et al. 2009; Compo and 37 

Sardeshmukh 2010; Deser et al. 2010; Meng et al. 2012; Solomon and Newman 2012; 38 

L’Heureux et al. 2013). For example, Solomon and Newman (2012) find a strengthening 39 

of the zonal SST gradients due to a weak SST cooling trend in the eastern equatorial 40 

Pacific since 1900 in four SST reconstructions that is not statistically significant relative 41 

to natural variability, while studies such as Tokinaga et al. (2012) find a weakening of the 42 

zonal SST gradient trend due to eastern equatorial Pacific SSTs warming faster than 43 

SSTs around the Maritime Continent when using a shorter period (1950-2005). These 44 

studies indicate that the observational record is not sufficient to prove or disprove 45 

opposing theories of the response of eastern equatorial Pacific SSTs to an increase in 46 

external forcing.  47 

There is likewise some uncertainty about whether the related atmospheric Pacific Walker 48 

circulation (hereafter Walker circulation or Walker cell) has weakened or strengthened in 49 

the twentieth century (Clarke and Lebedev 1996; Vecchi et al. 2006; Power and Smith 50 

2007; Vecchi and Soden 2007; Bunge and Clarke 2009; Karnauskas et al. 2009; Deser et 51 

al. 2010; Solomon and Newman 2012). These uncertainties are primarily due to large 52 

interannual variability, sparsity of data, and changes in the observing system in the 53 

eastern equatorial Pacific and prevent a clear verification of the response of the Walker 54 
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cell to external forcing in global climate model simulations of the 20th-21st centuries. 55 

Natural variability and changes in the observing system also contribute to uncertainties in 56 

in equatorial Pacific surface flux trends (Trenberth 2002; Wielicki et al. 2002a; Wielicki 57 

et al. 2002b). However, in addition to these common uncertainties, calculations of 58 

radiative fluxes at the ocean surface need to use subjective measures of cloud fraction 59 

(for ship-derived estimates) or models of cloud microphysics and assumptions about 60 

cloud overlap (for satellite derived estimates). 61 

Due to these uncertainties in the observational record (and the potentially weak signal of 62 

external forcing in the tropical Pacific, for example, see Solomon and Newman (2011)), it 63 

is necessary to use coupled climate model simulations to identify the response of the 64 

equatorial Pacific to an increase in greenhouse gases. Initialized hindcasts are useful for 65 

this purpose since they can be used to assess how well the models simulate observed 66 

trends, as well as, how simulations of observed trends (due primarily to natural 67 

variability) differ from ensemble mean forecasted trends (due to the response to an 68 

increase in external forcing). However, estimates of observed ENSO-residual trends 69 

(trends with ENSO variability removed) need to be used to verify simulated trends in 70 

initialized hindcasts for lead-times greater than approximately six years, since after this 71 

time the hindcasts loose memory of the initial conditions and an ensemble mean with 72 

sufficient members averages out natural variability (Branstator and Teng 2010). 73 

In this study we use decadal hindcast ensembles archived in the Climate Model 74 

Intercomparison Project phase 5 database (CMIP5; Taylor et al. 2012). These ensembles 75 
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are initialized yearly from 1970-2009 and run 10 times with perturbed initial conditions 76 

for each start date. The large number of simulations in this ensemble allows for robust 77 

estimates of the response of each model to an increase in external forcing. We focus our 78 

analysis on assessing simulations of equatorial Pacific SST, zonal wind stress, and 79 

surface flux trends.  80 

We use two indices to describe, to first order, the trend pattern in the equatorial Pacific 81 

Ocean; the warm-pool index (5°N-5°S, 120°-165°E) and the cold-tongue index (5°N-5°S, 82 

180°-70°W). The Pacific zonal mean zonal wind stress index (the τx index; 5°N-5°S, 83 

120°E-70°W) is used to describe the equatorial wind stress trends. These three indices are 84 

used to describe trends in the strength of the Walker circulation, the asymmetric 85 

circulation in the tropical Pacific where convection in the warm-pool region forces 86 

upward motion that subsides in the central-eastern Pacific. In addition, we use these 87 

indices to assess simulations of surface flux trends in the warm-pool and cold-tongue 88 

regions. 89 

We demonstrate that the decadal hindcasts do not produce an unambiguous weakening or 90 

strengthening of the Walker circulation over the 1970-2009 period, even for multi-model 91 

ensemble means of 6-10 year forecasts (a mean over 40 ensemble members beyond the 92 

influence of the initial observed state). It is argued that, even though models produce 93 

statistically significant warming trends in both the warm-pool and cold-tongue regions, 94 

the systematic response of the SST zonal gradient to an increase in external forcing over 95 

the 1970-2009 period is too weak to be identified with a 40-member ensemble. 96 
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Surface flux trends are assessed to identify potential biases in simulations of natural 97 

variability over the 1970-2009 period, and to compare fluxes due to natural variability 98 

with the response to external forcing. This analysis demonstrates that all initialized 99 

ensembles used in this paper forecast year-1 warm-pool SST trends similar to 100 

observations but ocean mixed-layer and net surface heat flux trends with opposite sign to 101 

air-sea datasets. In addition, all 6-10 year forecasts in the cold-tongue region produce 102 

positive net radiative flux trends even though shortwave flux trends are negative, i.e., for 103 

increasing cloudiness. This result is inconsistent with air-sea datasets, which uniformly 104 

show that the net surface radiative flux feedback is a damping of the underlying SSTs. 105 

2. Methods, Models and Data 106 

We apply our analysis to four sets of initialized decadal hindcasts archived in the CMIP5 107 

database that are initialized yearly from 1960-2009. Each start date has 10 ensemble 108 

members with perturbed initial conditions. These hindcasts take into account changes in 109 

external forcings such as greenhouse gases, solar activity, stratospheric aerosols 110 

associated with volcanic eruptions and anthropogenic aerosols. The first two ensembles 111 

use the UK Met Office coupled climate model HadCM3 configured with a horizontal 112 

resolution of 2.5ox2.5o in the atmosphere and 1.25o in the ocean (Gordon et al. 2000). The 113 

HadCM3-i2 ensemble is anomaly initialized (observed anomalies and the model’s mean 114 

climate are used as initial conditions) and the HadCM3-i3 ensemble is initialized with 115 

full fields (observed anomalies and climate mean states are used as initial conditions). 116 

The third ensemble uses the Canadian Centre for Climate Modelling and Analysis 117 

CanCM4 (Arora et al. 2011; Merryfield et al. 2013), and is full-field initialized. The 118 
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fourth ensemble uses the NOAA Geophysical Fluid Dynamics Laboratory CM2.1 119 

(Delworth et al. 2006; Chang et al. 2013) and is anomaly initialized. A multi-model 120 

ensemble mean (MME) is formed by averaging time series from the 4 ensembles (3 121 

ensembles in Sections 3.3 and 3.4). All fields are interpolated to the HadCM3 2.5ox2.5o 122 

grid. Only results using annual and ensemble means are presented in this study. 123 

Annual mean anomalies are bias corrected as a function of lead-time, where the model 124 

forecast anomaly is calculated as !Y jτ =Yjτ -Y τ , where Y τ  is the ensemble-average 125 

forecast as a function of lead-time τ , !Y jτ  is the anomaly of the raw forecast with respect 126 

to the ensemble average, j is the starting year. Y τ  is calculated as 1
n

Yjτ
j=1

n
∑ . However, it 127 

is important to note that the trends calculated as a function of lead-time are independent 128 

of the bias correction since all years used to estimate the trend have the same correction. 129 

Linear trends are calculated using the method of least squares linear regression. 130 

Confidence intervals are estimated using a two-tailed Student’s t distribution (Bendat and 131 

Piersol, 2000). Trends are estimated to be significantly different from a zero trend when 132 

they exceed the 95% level.  133 

Forecasted trends are calculated as follows: trends at lead year 1 are calculated from the 134 

time series of the first year of the 50 start dates, trends at lead year 2 are calculated from 135 

the time series of the second year of the 50 start dates, etc. In tropical Pacific SSTs, the 136 

externally forced signal emerges from the signal due to initial conditions after 137 

approximately 4 years and all information from the initialization is lost in approximately 138 
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6 years (Branstator and Teng 2010). We therefore use forecasted trends for lead years 6-139 

10 as estimates of uninitialized trends.  140 

Three data assimilations and four SST reconstructions are used to verify simulated SSTs 141 

and wind stress. The data assimilations are the European Centre for Medium-range 142 

Weather Forecasts Ocean Reanalysis System 4 (ORAS4 or “O”, Balmaseda et al. 2013), 143 

the Geophysical Fluid Dynamics Laboratory Ensemble Coupled Data Assimilation V3.1 144 

(ECDA or “G”, Chang et al. 2013), and the Simple Ocean Data Assimilation version 145 

2.1.6 (SODA or “S”, Carton and Giese 2008). The SST reconstructions are the Hadley 146 

Centre Sea Ice and SST dataset version 1.1 (Rayner et al. 2003), the National Oceanic 147 

and Atmospheric Administration Extended Reconstruction SST version 3b dataset (Smith 148 

et al. 2008), Lamont Doherty Earth Observatory SST version 2 (Kaplan et al. 1998), 149 

Centennial in Situ Observation Based Estimates of SST (Ishii et al. 2005). The four 150 

reconstructions are averaged to form a “best estimate”, marked with an “A” in Fig. 1. 151 

Also shown in Fig. 1 is the best estimate of the SST trends where ENSO variability has 152 

been removed following the technique developed in Solomon and Newman (2012), 153 

marked with “R”.  154 

Three air-sea flux datasets are used to validate the modeled surface fluxes; 1983-2006 155 

Coordinated Ocean-ice Reference Experiments dataset Version 2 (CORE.2 or “C2”, 156 

Yeager and Large 2008), 1984-2009 Woods Hole Oceanographic Institute Objectively 157 

Analyzed air-sea Fluxes (OAFlux or “O”, Yu and Weller 2007), and 1983-2009 National 158 

Oceanography Centre Version 2.0 Surface Flux and Meteorological dataset (NOCv2 or 159 

“N”, Berry and Kent 2011). Surface radiative fluxes are satellite-derived in all datasets 160 
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except NOCv2, which uses ICOADS (Woodruff et al. 1998; Worley et al. 2005) ship-161 

based estimates of cloud cover and empirical formulas. 162 

3. Results 163 

3.1 SST and τx trends 164 

Ensemble mean 1970-2009 warm-pool, cold-tongue, and τx trends as a function of lead 165 

year are presented in Fig. 1. Looking at the observed trends first (leftmost column), there 166 

is a systematic warming trend in all of the observed warm-pool time series even though 167 

these trends differ by up to a factor of 2. This is not the case for the τx and cold-tongue 168 

trends, where large variability obscures identifying whether these trends have increased 169 

or decreased over the 1970-2009 period. There is a tendency for a warming trend in the 170 

cold-tongue region, however only one of these time series is significant beyond the 95% 171 

level. Since large uncertainty in the cold-tongue region is primarily due to ENSO 172 

variability we also show an estimate of an ENSO residual trend (marked “R” in Fig. 1, 173 

where ENSO variability has been removed following the technique of Solomon and 174 

Newman (2012)). Removing ENSO variability reduces the cold-tongue warming trend by 175 

over 68%, which is useful in assessing the magnitude of the ensemble mean simulated 176 

trends at long leads but uncertainty in the ENSO residual index is too large to validate the 177 

sign of the simulated trends. 178 

To identify the impact of the initialization method on the long-lead trends we use two 179 

ensembles of HadCM3 initialized hindcasts, one that employed anomaly initialization 180 

(HadCM3-i2) and one that employed full-field initialization (HadCM3-i3). Even though 181 
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full-field initialized hindcasts have large model drift from the observed climatology to the 182 

model climatology (see Kim et al. 2012), the bias-corrected trends shown in Fig. 1 are 183 

relatively insensitive to the initialization method. 184 

Looking at the multi-model ensemble mean (MME) trends in Fig. 1, a significant 185 

warming trend is seen in both the warm-pool and cold-tongue trends by lead year 4. This 186 

is not the case for the MME τx trends, where even though confidence intervals narrow for 187 

increasing lead years, trends for lead years 4-10 are not significantly different from zero. 188 

Warm-pool trends are within the observed estimates. However, cold-tongue trends for 189 

lead years 4-10 are an order of magnitude larger than the ENSO residual estimate, which 190 

shows a weak statistically insignificant cooling trend.  191 

The loss of information in the initial conditions in all three MME indices is seen in the 192 

narrowing of the confidence intervals from lead year 1 to lead year 4, thereafter 193 

confidence intervals are approximately constant. It is between leads years 1 and 4 that the 194 

divergence from the initial observed ocean state estimate can be seen, for example in the 195 

discontinuous jump in all MME trends between leads years 2 and 4. 196 

3.2 Relationship between the Walker cell and zonal SST gradient 197 

The scatter between 1970-2009 warm-pool minus cold-tongue SST (near-equatorial zonal 198 

SST gradient) and τx trends from Fig. 1 is shown in Fig. 2. First, it is seen that the two 199 

observational trends plotted do not produce a consistent relationship between the SST 200 

gradient and τx trends. However, all year-1 forecasts of the trends have confidence 201 

intervals that overlap the observed confidence intervals in both the SST gradient and τx 202 
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directions, indicating that the modeled spread is within the observed estimates. Also, it is 203 

interesting to see that the multi-model ensemble mean year 6-10 forecasts are scattered 204 

across the zero lines. Therefore, even ensembles for forecasts 6-10 years from 205 

initialization with 40 ensemble members do not produce an unambiguous response of the 206 

Walker circulation to a change in external forcing for the 1970-2009 period.  207 

The systematic relationship between the zonal wind stress and SST gradient in the 208 

hindcasts indicates that the strength of the Walker cell is a function of the relative 209 

warming between the warm-pool and cold-tongue regions, as suggested by Bjerknes 210 

(1969). Therefore, even though there has been a systematic warming in the warm-pool 211 

region since 1900 (i.e., Fig. 3, Solomon and Newman 2012), the strength of the Walker 212 

cell depends on the relative warming in the cold-tongue region.  213 

3.3 Warm-pool and cold-tongue surface energy flux trends 214 

The net surface energy flux into the ocean is 215 

                                                      Qnet =QS+QL+QH+QE                                               (1) 216 

where QS  is the net solar radiation, QL  is the net longwave radiation, QH  is the sensible 217 

heat flux, and QE  is the latent heat flux. 218 

a. Warm-pool fluxes 219 

Fig. 3 shows surface energy flux trends from the CanCM4, HadCM3-i2, and GFDL 220 

CM2.1 ensembles compared to CORE.2, OAFlux, and NOCv2 fluxes for the 1983-2006 221 
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period (the common period between the observational estimates and models). The 222 

observed fluxes indicate that the net surface energy flux trend is negative in the warm-223 

pool region (Fig. 3a). A decreasing net surface energy flux and net surface shortwave flux 224 

after the 1997-1998 El Niño in the warm-pool region is consistent across the air-sea 225 

datasets (results not shown). The NOCv2 ship-based air-sea flux dataset that extends 226 

back to 1954 indicates that there has been a long-term decreasing cloudiness trend in the 227 

warm-pool region, consistent with the findings of Norris (2005), Deser et al. (2010), and 228 

the recent discussion by Bellomo et al. (2014). However, the three datasets show that 229 

there has been decadal variability in cloudiness in the warm-pool region since 1983 with 230 

a decrease in cloudiness until 1997-1998 and an increase thereafter. The sign of the net 231 

surface longwave flux trend differs across the three datasets. Also, note the large range in 232 

the latent heating trends across the three datasets. 233 

The SST tendency equation can be written as 234 

                                         C ∂ "T
∂t

+Do+Qnet                                          (2) 235 

where !T  is the SST anomaly, C = cpρoH  is the heat capacity of the ocean mixed layer, 236 

is cp  the specific heat at constant pressure, ρo  is the density of seawater, H  is the mixed 237 

layer depth, Qnet  is the net surface flux into the ocean, and Do  is the mixed layer ocean 238 

heat transport. For annual means, the heat storage term is an order of magnitude smaller 239 

than the net surface flux and ocean heat transport terms and 240 

                                                              Do ≈ -Qnet                                                          (3) 241 
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Therefore, the small warm-pool SST tendency trend relative to the net surface flux trend 242 

in the observational estimates requires a warming due to ocean mixed layer heat fluxes to 243 

compensate for the cooling due to net surface fluxes. 244 

All three models produce interannual ENSO variability with a negative shortwave flux 245 

feedback, i.e., shortwave (and net) fluxes damp the underlying SSTs. However, 246 

superimposed on the interannual variability is a positive trend for both SSTs and 247 

shortwave fluxes in all three models, with year-1 net surface flux trends between 5-15 248 

times smaller than the observational estimates. This results in all three models producing 249 

net surface and ocean mixed-layer heat flux trends opposite to the observational 250 

estimates.  251 

For year-1 forecasts the models produce a positive shortwave feedback on decadal time 252 

scales and a negative shortwave feedback on interannual time scales. By contrast, the 6-253 

10 year forecasts produce a negative or statistically insignificant shortwave flux feedback 254 

on decadal time scales with a compensating positive longwave flux trend. It is unclear 255 

from this analysis what causes the positive shortwave flux feedback in the year-1 256 

forecasts in all three models, but given that this result is not found in the year 6-10 257 

forecasts, this suggests that the positive shortwave feedback in the warm-pool region is 258 

due to atmosphere and ocean circulations forced by the initialized ocean state. 259 

b. Cold-tongue fluxes 260 

Cold-tongue shortwave fluxes estimated from all three flux datasets are negatively 261 

correlated with the observed interannual warm-pool fluxes discussed above, consistent 262 
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with an eastward shift in cloudiness during El Niño events. However, the long-term 263 

increase in cloudiness seen in longer records (Norris 2005; Deser et al. 2010; Bellomo et 264 

al. 2014) is not produced using the 1983-2006 satellite record and the CORE.2 and 265 

OAFlux datasets produce a positive shortwave flux trend (decreasing cloudiness), while 266 

the ship-derived NOCv2 dataset produces a negative shortwave flux trend. All three 267 

datasets produce a negative net surface flux trend over the 1983-2006 period. Estimates 268 

of net surface longwave fluxes differ across the air-sea datasets, even for CORE.2 and 269 

OAFlux that use the same ISCCP-FD radiative fluxes. 270 

As was seen in the warm-pool fluxes, the initialized hindcasts produce year-1 forecasts 271 

with negative net surface flux feedbacks in the cold-tongue region that damp SST 272 

anomalies that evolve during an ENSO event, similar to the air-sea datasets (results not 273 

shown). Again, as was seen in the warm-pool region, superimposed upon this interannual 274 

variability all models produce positive net surface flux trends, due to the dominance of 275 

positive longwave flux trends over shortwave fluxes trends.  276 

The response to external forcing (as estimated by the year 6-10 forecast ensemble mean) 277 

is consistent across the 3 models and with the year-1 forecasts (except for the HadCM3-i2 278 

positive year-1 shortwave flux trend). A decreasing shortwave flux trend indicates that 279 

cloudiness increases as SSTs increase in the cold-tongue region. This cooling trend is 280 

compensated by a positive downward longwave flux trend, resulting in positive net 281 

radiative and net surface flux trends in all three models. All three ensembles produce year 282 

6-10 forecasts with net surface flux trends opposite to the observational estimates. In 283 

addition, latent heating trends damp the underlying SSTs but are weaker than the 284 
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observational estimates. 285 

3.4 Cold-tongue surface energy flux feedbacks 286 

Large uncertainty estimates and the differences across air-sea datasets in the cold-tongue 287 

region obscure relationships between surface fluxes and SSTs (Fig. 3). More systematic 288 

relationships can be identified by calculating surface energy flux feedback coefficients 289 

(units of W m−2 K−1), which are calculated by regressing terms in the surface energy 290 

budget to the cold-tongue SSTs. The surface energy flux feedback coefficients are listed 291 

in Table 1 for the observational estimates and in Table 2 for the year 6-10 forecasts.  292 

In all three air-sea datasets, shortwave fluxes are a negative feedback. The longwave 293 

fluxes differ across the datasets (as noted above) but the net radiative flux feedback is 294 

uniformly negative across the three observational estimates with an average value of        295 

-5.9±1.9 W m-2 K-1. Including the turbulent heat fluxes results in an average net surface 296 

flux feedback equal to -13.1±0.9 W m-2 K-1. 297 

The year 6-10 forecasts also produce a negative net shortwave flux feedback but the 298 

average feedback coefficient is a factor of 4.7 smaller than the observational estimates. 299 

The longwave flux feedback is uniformly positive across the 3 ensembles and at least a 300 

factor of 2 larger than the shortwave flux feedback. This results in a positive net radiative 301 

flux feedback across the models with an average of 1.9±0.9 W m-2 K-1 and an average net 302 

surface flux feedback that is not statistically different from zero at the 95% level. 303 

Therefore, even though both the air-sea datasets and the models produce an increase in 304 

cloudiness as cold-tongue SSTs increase, all three models produce significantly weaker 305 
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net surface flux feedbacks than the observational estimates due to weaker negative 306 

shortwave flux feedbacks and positive longwave flux feedbacks. 307 

4. Summary and Discussion 308 

In this study we used yearly-initialized decadal hindcasts with 10 ensemble members for 309 

each start date from four CMIP5 coupled climate models to assess simulations of 1970-310 

2009 equatorial Pacific SST, zonal wind stress, and surface flux trends. SSTs and zonal 311 

wind stress were assessed against three data assimilations and four SST reconstructions, 312 

and surface fluxes were assessed against CORE.2, OAFlux, and NOCv2 air-sea flux 313 

datasets.  314 

All four ensembles forecast a statistically significant warm-pool SST warming trend that 315 

is within the observed estimates and a statistically significant cold-tongue SST warming 316 

trend that is an order of magnitude larger than an ENSO residual estimated using SST 317 

instrumental reconstructions. All forecasts produce a close relationship between the near-318 

equatorial zonal SST gradient across the equatorial Pacific and the zonal mean zonal 319 

wind stress, indicating that, even if both the warm-pool and cold-tongue regions warm, 320 

the strength of the Walker cell is a function of the relative warming between the warm-321 

pool and cold-tongue regions. Multi-model ensemble means formed using forecasts 6-10 322 

years from initialization with 40 ensemble members do not produce an unambiguous 323 

zonal SST gradient response to an increase in external forcing.  324 

In the warm-pool region all year-1 forecasts produce SST trends similar to observations 325 

but ocean mixed-layer and net surface heat flux trends with opposite sign to CORE.2, 326 
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OAFlux, and NOCv2 estimates. In addition, year-1 forecasts produce a positive 327 

shortwave feedback on decadal time scales, while 6-10 year forecasts produce a negative 328 

or statistically insignificant shortwave flux feedback on decadal time scales, suggesting a 329 

sensitivity to circulations forced by the initialized ocean state.  330 

In the cold-tongue region all three initialized ensembles forecast a positive net radiative 331 

flux trend even though the shortwave flux trend is negative, i.e., for increasing cloudiness. 332 

This is inconsistent with the air-sea datasets, which uniformly show that the net surface 333 

radiative flux feedback is a damping of the underlying SSTs. 334 

In this study we focus on near-equatorial fields at the air-sea interface and therefore 335 

cannot determine the role of large-scale circulation and the vertical structure of clouds 336 

and water vapor in the SST, zonal wind stress, and surface flux trends. Clearly, a positive 337 

net surface flux feedback in the cold-tongue region is contributing to the systematic 338 

positive SST trend in the cold-tongue region, but to what extent this is due to changes in 339 

the atmospheric circulation and structure of the clouds needs to be determined.  340 

In a follow-up study we will investigate the processes that contribute to the positive 341 

longwave flux feedback and what causes the longwave flux feedback to be larger than the 342 

negative shortwave flux feedback in the cold-tongue region in year 6-10 forecasts. For 343 

example, a question that will be addressed is, can the positive longwave flux feedback be 344 

understood in terms of relatively constant high cloud temperatures due to rising cloud 345 

tops (the fixed anvil temperature hypothesis of Hartmann and Larson (2002) and 346 

discussed relative to CMIP3 models in Zelinka and Hartmann (2010))? What role do the 347 
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observed north-south asymmetries in cloud cover changes (discussed in Bellomo et al. 348 

(2014)) play in setting up the atmospheric circulations that impact equatorial cloud 349 

structure and water vapor feedbacks (e.g., Sun et al. 2006; Sun et al. 2009)? These 350 

investigations will advance the understanding of coupled feedbacks in the equatorial 351 

Pacific that determine how the cold-tongue region will respond to an increase in external 352 

forcing. 353 
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Tables 476 

(W m-2 K-1) CORE.2 OAFLUX NOCv2 MME 

SW -4.1 -6.5 -6.2 -5.6±1.3 

LW -2.4 -1.0 2.5 -0.3±2.5 

SW+LW -6.6 -7.4 -3.7 -5.9±1.9 

NET -12.0 -13.7 -13.5 -13.1±0.9 

Table 1: 1983-2006 cold-tongue annual mean observational estimates of surface flux 477 

feedback coefficients, in units of W m-2 K-1. Right column shows the mean over the three 478 

air-sea flux datasets +/- one standard deviation. Statistically significant (insignificant) 479 

coefficients at the 95% level based on a two-tailed Student’s t-test highlighted with bold 480 

(italics) font. 481 

(W m-2 K-1) 
CanCM4 

YR6-10 

GFDL 

YR6-10 

HadCM3 

YR6-10 
MME 

SW -0.5 -1.5 -1.7 -1.2±0.7 

LW 1.9 2.9 4.6 3.1±1.4 

SW+LW 1.4 1.4 2.9 1.9±0.9 

NET 1.4 -0.1 1.1 0.8±0.8 

Table 2: 1970-2009 cold-tongue annual mean year 6-10 forecast surface flux feedback 482 

coefficients, in units of W m-2 K-1. Right column shows the mean over the three 483 

ensembles +/- one standard deviation. Statistically significant (insignificant) coefficients 484 

at the 95% level based on a two-tailed Student’s t-test highlighted with bold (italics) font.  485 
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Table Captions: 486 

Table 1: 1983-2006 cold-tongue annual mean observational estimates of surface flux 487 

feedback coefficients, in units of W m-2 K-1. Right column shows the mean over the three 488 

air-sea flux datasets +/- one standard deviation. Statistically significant (insignificant) 489 

coefficients at the 95% level based on a two-tailed Student’s t-test highlighted with bold 490 

(italics) font. 491 

Table 2: 1970-2009 cold-tongue annual mean year 6-10 forecast surface flux feedback 492 

coefficients, in units of W m-2 K-1. Right column shows the mean over the three 493 

ensembles +/- one standard deviation. Statistically significant (insignificant) coefficients 494 

at the 95% level based on a two-tailed Student’s t-test highlighted with bold (italics) font.  495 
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Figure Captions: 496 

Figure 1: A) τx index 1970-2009 linear trends as a function of lead year, in units of dPa 497 

year-1. B) Warm-pool index 1970-2009 linear trends as a function of lead year, in units 498 

of °C year-1. C) Cold-tongue index 1970-2009 linear trends as a function of lead year, in 499 

units of °C year-1. Trends for lead years 1,2,4,6,8,10 shown for ensemble mean hindcasts, 500 

as indicated in (B). MME indicates multi-model ensemble mean. Observed 1970-2009 501 

trends estimated using three data assimilations (marked, “G”,”O”,”S”) and a best estimate 502 

from 4 SST reconstructions with (marked “A”) and without (marked “R”) ENSO 503 

variability. Error bars show 95% confidence intervals. 504 

Figure 2: Scatterplot of 1970-2009 warm-pool minus cold-tongue SST trends vs τx trends 505 

for observations and decadal hindcasts shown in Fig. 1 of the manuscript, in units of °C 506 

year-1 and dPa year-1, respectively. Observations are shown with large green filled circles. 507 

Ensemble mean year 1 forecasts shown with black filled circles. Ensemble mean year 2-5 508 

forecasts shown with blue filled circles. Ensemble mean year 6-10 forecasts shown with 509 

red filled circles. Multi-model ensemble means shown with larger filled circles with 510 

yellow centers. Lines indicate confidence intervals estimated with a two-sided P=0.05 511 

level. The thin black dash diagonal line indicates a τx trend of -1.0 dPa year-1 for a SST 512 

gradient trend of 5.e-3 °C year-1. 513 

Figure 3: 1983-2006 annual mean equatorial Pacific surface energy flux trends, in units 514 

of W m-2 year-1. Left) Warm-pool. Right) Cold-tongue. A) CORE.2. (black error bars), 515 

OAFlux (red bars), NOCv2 (green bars). B) HadCM3-i2. C) CanCM4. D) GFDL CM2.1. 516 

NET is equal to SW+LW+SH+LH. Error bars show 95% confidence intervals. Year-1 517 
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forecast of trends shown with black error bars. Year 6-10 forecast shown with red error 518 

bars. All fluxes are positive downward. Note larger range of fluxes in (A).   519 

       Observations        Observations 
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 520 
Figure 1: A) τx index 1970-2009 linear trends as a function of lead year, in units of 521 

dPa/year. B) Warm-pool index 1970-2009 linear trends as a function of lead year, in units 522 

of °C/year. C) Cold-tongue index 1970-2009 linear trends as a function of lead year, in 523 

units of °C/year. Trends for lead years 1,2,4,6,8,10 shown for ensemble mean hindcasts, 524 

as indicated in (B). MME indicates multi-model ensemble mean. Observed 1970-2009 525 

trends estimated using three data assimilations (marked, “G”,”O”,”S”) and a best estimate 526 

from 4 SST reconstructions with (marked “A”) and without (marked “R”) ENSO 527 

variability. Error bars show 95% confidence intervals. 528 

OBS HadCM3 i2 HadCM3 i3 CanCM4 GFDL MME−2

−1

0

1 x 10−3 A) ox Index Trends as a Function of Lead Year

dP
a/

ye
ar

OBS HadCM3 i2 HadCM3 i3 CanCM4 GFDL MME−0.01

0

0.01

0.02

1 1 1 1 1 12 2 2 2 2 24 4 4 4 4 46 6 6 6 6 68 8 8 8 8 810 10 10 10 10 10

B) Warm Pool Index Trends as a Function of Lead Year

o C/
ye

ar

OBS HadCM3 i2 HadCM3 i3 CanCM4 GFDL MME−0.03

−0.02

−0.01

0

0.01

0.02

C) Cold Tongue Index Trends as a Function of Lead Year

o C/
ye

ar

G O SA R 



 31 

       529 

Figure 2: Scatterplot of 1970-2009 warm-pool minus cold-tongue SST trends vs τx 530 

trends for observations and decadal hindcasts shown in Fig. 1 of the manuscript, in units 531 

of °C/year and dPa/year, respectively. Observations are shown with large green filled 532 

circles. Ensemble mean year 1 forecasts shown with black filled circles. Ensemble mean 533 

year 2-5 forecasts shown with blue filled circles. Ensemble mean year 6-10 forecasts 534 

shown with red filled circles. Multi-model ensemble means shown with larger filled 535 

circles with yellow centers. Lines indicate confidence intervals estimated with a two-536 

sided P=0.05 level. The thin black dash diagonal line indicates a τx trend of -1.0 dPa year-537 
1 for a SST gradient trend of 5.e-3 °C year-1.  538 
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 548 

Figure 3: 1983-2006 annual mean equatorial Pacific surface energy flux trends, in units 549 

of W m-2 year-1. Left) Warm-pool. Right) Cold-tongue. A) CORE.2. (black error bars), 550 

OAFlux (red bars), NOCv2 (green bars). B) HadCM3-i2. C) CanCM4. D) GFDL CM2.1. 551 

NET is equal to SW+LW+SH+LH. Error bars show 95% confidence intervals. Year-1 552 

forecast of trends shown with black error bars. Year 6-10 forecast shown with red error 553 

bars. All fluxes are positive downward. Note larger range of fluxes in (A). 554 
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